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A generalized phase diffusion equation is derived that incorporates spatial variations of the pattern
amplitude. We investigate on the one hand the spatiotemporal relaxation behavior of initially prepared
phase perturbations and on the other hand the structure and dynamics of damped phase waves that are
forced by time-periodic, spatially localized perturbations. For the two paradigmatic cases of Rayleigh-
Bénard convection (RBC) in the form of straight parallel rolls and of axisymmetric Taylor vortex flow
(TVF), we compare the results of the phase equation for finite setups in quantitative detail with finite-
difference numerical simulations of the full two-dimensional hydrodynamic field equations, with
Ginzburg-Landau (GL) equations, and with various experiments. The phase equation can be
transformed into a Schrédinger-like form with a potential that is determined by the amplitude varia-
tions. The free relaxation of phase perturbations is determined by a Sturm-Liouville eigenvalue problem,
and the long-time behavior is governed by its lowest positive eigenvalue. This defines an effective
diffusion constant D, which is considerably enhanced relative to the reference value D, in an ideal sys-
tem with constant amplitude. Using the GL amplitude profiles one finds that D /D, depends only on a
specific combination of driving control parameter and system length. Furthermore, one can apply super-
symmetry commutation relations to relate the diffusive eigenvalues and eigenmodes of TVF and RBC to
each other. For the latter case, the phase equation has a spatially homogeneous phase eigenmode with a
zero eigenvalue that admits a free undamped pattern shift as a whole, while inhomogeneities of the phase
relax away with higher diffusive eigenmodes. In the full system of equations there appears, instead of the
zero-eigenvalue dynamics, a more complicated nondiffusive ultraslow phase dynamics that allows one to
reanalyze recent phase diffusion experiments in RBC. Also, the spatially varying decay rates and wave
numbers of periodically forced damped phase waves are shown to depend on amplitude variations and
the finiteness of the system. We elucidate this dependence and show how these wave characteristics
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differ from each other and show that they are in general unrelated to the phase diffusion constant.

PACS number(s): 47.10.+g, 47.27.Te, 47.32.—y, 02.60. — x

I. INTRODUCTION

During the past decade or so the concept of character-
izing certain structural and dynamical properties of pat-
terns that arise in structure forming systems by their
phase field has proved to be quite useful. This method is
particularly fruitful to describe the spatiotemporal
behavior and response of the pattern on long space and
time scales [1,2]. The method was originally introduced
in the context of periodic convective structures [3] and
subsequently widely used [3-22], e.g., to investigate the
stability of periodic patterns [3-9], wave number selec-
tion [4,6,10-13], defect dynamics [14], transition to tur-
bulence [15], and other questions.

In this paper we elucidate the influence of boundary-
induced amplitude variations of the structure on its phase
dynamics. To that end, we derive a phase equation that
is a generalized diffusion equation into which enters the
amplitude of the pattern. This approach is rather general
and applicable to various structures. We treat in explicit
quantitative detail the two paradigmatic cases of Taylor
vortex flow (TVF) and Rayleigh-Bénard convection
(RBC) where the flow patterns are effectively one dimen-
sional [2]. For both these systems we compare results of
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the phase equation with our extensive numerical simula-
tions of the full hydrodynamic field equations, with nu-
merical solutions of Ginzburg-Landau equations (GLE),
and with experiments. We verify that the time scale sep-
aration of the slow long-time phase dynamics from the
faster modulus dynamics leads to an effective decoupling
of the former from the latter.

In such a situation our phase equation can be brought
after a simple transformation into a Schrodinger-like
form 3, =[3%2 — ¥V (x)]¢ with a potential term ¥ (x) that
reflects the particular form of boundary-induced ampli-
tude variations. The potential ¥ =(32R)/R is deter-
mined by the curvature of the final-state modulus R (x) of
the flow amplitude. Thus, in the absence of modulus
variations, R =const, one recovers a genuine diffusion
equation. We use the generalized diffusion equation to
investigate the influence of a spatially varying modulus,
i.e., the influence of a nonzero potential ¥ (x) on (i) the
free decay of initial phase perturbations and (ii) on the
damped phase waves that are generated by a spatially lo-
calized time-periodic forcing of the phase.

Initial phase perturbations decay to zero with a spa-
tiotemporal dynamics that is governed by the eigenvalues
and eigenfunctions of the “Hamilton” operator
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H=—-3>+V(x). Its lowest nonvanishing eigenvalue
describing the long-time phase relaxation determines an
effective diffusion constant D. Thus, one immediately
infers that D is enhanced (diminished) relative to the
reference value D, in an ideal infinite system with
R =const or ¥=0, when R (x) is convex (concave)—a
positive (negative) potential ¥ =(32R)/R increases (de-
creases) the “ground-state energy” of H, i.e., the lowest
eigenvalue that governs the long-time dynamics.
Evaluating R (x) and ¥V (x) with the GLE, one finds that
the effective diffusion constant D depends only on one pa-
rameter, a=VeL /&o, which is a combination of control
parameter €, system length L, and correlation length &,.
In fact, plotting the TVF diffusion constants obtained in
experiments [19,20] and in numerical simulations for
different L and € versus the parameter a, one finds almost
universal behavior for the enhancement of D relative to
D,. This enhancement of diffusion by the end-wall-
induced TVF amplitude variations is quite spectacular
and, moreover, it is well explained by the phase theory
with the modulus R ryg(x) taken from the GLE.

The GLE moduli for RBC and TVF are given in terms
of Jacobian elliptic functions such that

RRnc(x):ConSt/RTvp(x) .

This causes a supersymmetry relation between the two
“Hamiltonians” —since they are commutation partners,
all their nonzero eigenvalues are the same.

In the RBC case with vanishing convective field ampli-
tudes at the sidewalls, a zero eigenvalue appears. It im-
plies that a spatially homogeneous phase perturbation
does not decay—the pattern can be shifted uniformly
within the phase equation approximation—while spatial
inhomogeneities of the phase relax diffusively with a spa-
tiotemporal dynamics described by higher diffusive
modes and eigenvalues. The latter can be identified also
in the numerical simulations of the full field equations on
not-too-long time scales. After that, i.e., after spatial in-
homogeneities have effectively decayed, the full field
equations show a different nondiffusive ultraslow phase
dynamics. The appearance of this motion instead of a
free phase motion predicted by the zero eigenvalue of the
GLE is influenced by an interaction between phase and
sidewall that is not captured by the GLE. Its properties
vary with L and € separately. This analysis also shows us
how to interpret the experimental data of Croquette and
Schosseler [17].

In the last part of this paper we investigate within the
framework of our phase equation phase waves that are
generated by spatially localized low frequency periodic
forcing. Local decay rates #,(x), and local wave num-
bers #;(x) of these waves are influenced by the finiteness
of the system and in addition by spatial variations of the
pattern amplitude. Recent experimental parameters and
measurement locations [16,20] happened to be such that
the measured #,(x) and #;(x) were close to the value
Ho=V ©/(2D,). The latter results in a semi-infinite sys-
tem within a genuine diffusion equation from a pure
Stokes layer driven at frequency w. In general, however,
¥, and ¥, deviate from each other and from %, and,
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moreover, these two quantities are unrelated to phase
diffusion. Furthermore, the properties of forced phase
waves depend less sensitively on the spatial variations of
the pattern amplitude than the long-time free diffusive re-
laxation of initial phase perturbations.

Our work is organized as follows: In Sec. IT we de-
scribe the experimental setups to which our theory ap-
plies. Then we derive the phase equation and give an
overview of the mathematical implications. In Sec. III
we present solution methods for the Sturm-Liouville ei-
genvalue problem that arises when describing the free de-
cay of initial phase perturbations. In Sec. IV we present
amplitude profiles and potentials for RBC and TVF
within the GLE approximation. We solve the phase
equation and we determine effective diffusion constants.
The results are compared with diffusion experiments and
simulations in Sec. V. Section VI investigates forced
phase waves and Sec. VII contains a conclusion.

II. LONG-TIME PHASE DYNAMICS

To introduce the reader to the problem and to illus-
trate the concepts, we briefly describe an idealized experi-
ment which simplifies actual realizations [19,20]. Consid-
er a Taylor-Couette (TC) apparatus of length L whose
inner cylinder rotates with constant angular velocity,
while the outer one stays at rest. The driving is above the
critical value for the onset of Taylor vortices and the sys-
tem is filled with a stationary vortex pattern. This pat-
tern can be characterized by the strength and the position
of each vortex. Let us now move one end plate inwards
so carefully that the strength and the number of the vor-
tices do not change. Obviously, the whole structure must
shrink and the vortices must rearrange their position.
Monitoring the location of an arbitrary vortex center,
one finds that it relaxes roughly exponentially towards its
final position. This gives the idea of treating the problem

with a simple diffusion equation,
(2.1)

3,@(x,t)=Dy3%p(x,1t)

for a phase

@lx,t)=¢(x,t)—d(x,t =0) 2.2)

connected to the deviation of the vortices from their final

configuration [21]. The variable x denotes the axial posi-
tion. The solution of (2.1),

—n2yyt

n7z’i e , (2.3)

px,t)=3 a,sin T

n=1

describes the relaxation towards the final phase profile
¢(x,t = ). For long times the relaxation dynamics is
governed by the lowest, n =1, spatial mode sin(7x /L),
the amplitude of which relaxes with the rate

_
Yo= FDO .
However, comparing the above spatiotemporal relaxation
behavior with that of experiments and numerical simula-
tions of the full hydrodynamic field equations, one finds
(cf. Sec. V A1) that the boundary-induced spatial varia-

(2.4)
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tion of the TVF pattern amplitude causes considerable
changes. These boundary effects cannot be incorporated
directly into (2.1) by imposing some suitable boundary
condition on @ since by definition, and in view of the fact
that the “gentle” relaxation behavior of ¢ does not
change the number of vortices, ¢ has homogeneous
boundary conditions at the two ends,

@lx =0,t)=¢@(x =L,t)=0 .

To derive an extension of (2.1), we use as a starting
point the Ginzburg-Landau equation. This also gives us
the opportunity of transferring the results to other sys-
tems, where a similar GLE is valid. Thus, one can regard
the following theory as a general one, with TVF and RBC
being special application examples. Furthermore, we
want to emphasize that the resulting phase equation is
structurally independent of the choice of the starting
GLE; only the coefficients might change a little. This fol-
lows from the work of Kramer et al. [11]. A further ad-
vantage of using a GLE is the fact that all of its
coefficients are known and mostly checked experimental-
ly [22-30]. So, quantitative comparison with the phase
dynamics observed in experiments and numerical simula-
tions is possible.

The GLE for the complex amplitude,

A(x,t)=R (x,t)e'¥>" (2.5a)

of a supercritically bifurcating one-dimensional pattern
like RBC or TVF is [25,31,32]

700, A =(e+£502 —gl A" A4 (2.5b)
or

790, R =[e+£50% —£5(0,6)*—gR*IR | (2.5¢)

7oR3,6=E}[RD} +2(3,R)D, 14 , (2.5d)

respectively. In the TC case, we use the relative devia-
tion
€= Q@ 1 (2.5e)
Q.
of the rotation rate () of the inner cylinder from the criti-

cal value (2. for onset of TVF as control parameter. In
the RB system,

(2.5

is the relative deviation of the temperature difference be-
tween the hot bottom and the cold top of the fluid layer
from the critical one, AT,, for onset of RBC. For the TC
systems with nonrotating outer cylinder that we shall in-
vestigate here, one has 7,=0.03796d /v and
£,=0.2694d when the radius ratio n=r,/r, is 0.75.
These values have been obtained by interpolating data of
Ref. [24]. Here d =r,—r, is the gap width and v the ki-
nematic viscosity of the fluid in the annulus. For the RB
system on the other hand, 7,=0.07693d’/k and
£,=0.3848d if, e.g., the Prandtl number Pr=v/k is 1
[24]. Here d is the height of the fluid layer and « the
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thermal diffusivity.
The wave vector of the pattern lies in the x direction.
The modulus relaxes to its final profile,

R(x)=R(x,t =), (2.6)

on a typical time scale of 7,/€, while the phase reaches
equilibrium on the scale 1/y,=L%/(7’D,) (2.4) on
which, e.g., the vortices relax to their final positions.
Here,

D,=£&/7, 2.7

is the phase diffusion constant for a reference system in
which 4 (x,?) reaches a final state 4, with spatially con-
stant modulus and phase, ie, D3'F=1.912v and
D&BC=1.924«.

We shall investigate here situations where the relaxa-
tion time of the modulus is much shorter than that of the
phase:

SIS , (2.8a)
€ Yo
or equivalently
a>>1r . (2.8b)
Here we have introduced the quantity
a=VeL /&, . 2.9

We found this combination [33] of system length and su-
percritical control parameter to characterize the long-
time phase diffusion behavior of RBC and TVF (cf. fol-
lowing sections).

In systems that satisfy (2.8), the time scale separation
causes an effective decoupling of the slow phase dynamics
from the faster modulus dynamics. We thus formulate a
decoupling approximation by using in the phase equation
(2.5d) the final equilibrated modulus profile R (x). This
approximation leads to the phase equation

*lsle(x)a,—2[8xR(x)]ax—R(x)ai P(x,1)=0,
0

(2.10)

to be studied in this paper with R (x) as input. For exam-
ple, for an infinitely long system, R (x) would be con-
stant, reducing (2.10) to (2.1). The main deviation in
(2.10) from the ordinary diffusion equation comes in stan-
dard finite setups from the boundaries at x =0,L that
cause the bulk homogeneous modulus profile to be de-
formed there. For example, for RBC one typically has
R =0 at the end walls of convective channels [27,32].
Nonrotating rigid end plates in the TC setup, on the oth-
er hand, induce an increase of the TVF amplitude that
grows with the inverse distance from the end [25,29,36].
We shall come back to the concrete forms of R (x) in Sec.
IVA.

We should like to stress that the quality of the decou-
pling approximation (2.10) for the phase equation is very
good: Comparing numerical integrations of the full GLE
(2.5b) for typical experimental parameters with results
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from (2.10), we found no significant deviations in the
long-time phase dynamics.

III. SOLUTION METHODS
FOR THE STURM-LIOUVILLE EIGENVALUE
PROBLEM OF THE PHASE EQUATION

Before determining the long-time phase dynamics for
the concrete modulus profiles of RBC and TVF, we dis-
cuss here methods and some mathematical properties of
the phase equation (2.10). It can be solved with a separa-
tion ansatz,

P(x,t)=@(x)e 1, (3.1)

where ¥ and @(x) are eigenvalues and eigenfunctions, re-
spectively, of the Sturm-Liouville (SL) eigenvalue prob-
lem [37]

Lo(x)= R(x)a§+2[axR(x)]ax+k%R(x) @(x)=0.

(3.2a)
Here we have introduced the reduced eigenvalue
A=y/Y0, (3.2v)

using the phase relaxation rate y,=(m%/L2)D, (2.4) and
diffusion constant D of a pattern with homogeneous am-
plitude A4 as a reference. With the homogeneous bound-
ary conditions [a@(0)+be'(0)]=0 and [ce(L)
+d@'(L)]=0, the operator .L in (3.2a) is Hermitian with
a real eigenvalue spectrum [37]. When R (x) is positive
everywhere as for TVF, the SL problem (3.2) is regular
[37] and all eigenvalues A, are distinct and positive. For
a singular situation like RBC with R (x =0,L)=0, a zero
eigenvalue appears. The eigenfunctions §,(x) of (3.2)
form a complete orthogonal function system. Hence the
solution of the phase equation (2.10) can be expanded as

px,)= a,p,(x)e ",

n=1

(3.3)

with ¥, =A,7,.
We define an effective diffusion constant D by the
smallest, nonzero, positive eigenvalue of (3.2):

D/Dy=min A, =¥ in/¥o - (3.4)
A>0

Its deviation from 1 reflects the effect of the boundary-
induced spatial variation of R (x) on the long-time phase
relaxation. As an aside, we mention that within the GLE
the relaxation to a final phase-winding amplitude,
A(x)=Re*™ with homogeneous modulus and phase
é(x)=(k —k_)x, is described by a diffusion constant

e—3EXk —k,)?

Dy(k,€)=D
o ek —k,

, (3.5)

where k, is the critical wave number of the pattern. Here
we shall investigate the effect of nonhomogeneous final-
state modulus profiles R (x) on phase diffusion. Because
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of the particular form of the boundary conditions to the
phase variable (time independent and allowing self-
adjointness), the final phase profile will be stationary. In
Sec. VI we shall treat a situation with explicitly time-
dependent boundary conditions.

A. Matrix representation and truncation approximations

Before we present in Sec. III B our method to deter-
mine and describe the phase dynamics, we briefly review
for the sake of completeness in this subsection the results
[22] of determining the eigenvalue spectrum of (3.2) alge-
braically.

1. The method

The method [22] transforms the differential equation
(3.2) into a matrix equation:

(T, —AS, )P =0, (3.6)

by expanding into a suitable complete orthonormal func-
tion system:

Ppx)=T @,ln) . 3.7

n=1

Then the differential operator .L in (3.2) is represented by
a matrix as in quantum mechanical problems from where
the bra-ket notation is taken. The matrix elements are

2
Sy ={(nlRIm), T,,=—%(nlR82+23,R)3,Im) .
m

(3.8)

To determine the lowest lying eigenvalues of (3.6) that
control the long-time relaxation behavior of ¢(x,t?), the
matrices S and T are evaluated and truncated in succes-
sively increasing order.

2. Two analytically solvable test problems

We checked the numerical approximation scheme
against two problems for which the eigenvalue spectrum
can be given analytically with the method described in
Sec. III B. The modulus profile

R(x)=e /4~ L—x)/ (3.9a)

of our first test problem corresponds to a regular SL
problem and looks for / <L somewhat similar to that of
TVF. Increasing towards the boundaries, this R (x) is
convex with a minimum at x =L /2. The resulting eigen-
values are

_ ., 1 L?

A,=n T3 (3.9b)
with n =1,2, ... . Hence the effective diffusion constant
(3.4),

p=p, |1+ LL (3.9¢)

0 772 12 ’ .
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is larger than D,. A physical explanation for this
enhancement of the diffusion constant will be discussed in
Sec. III B.

Our second test profile allowing an analytical deter-
mination of the eigenvalue spectrum is concave:

R (x)=cos L:LLQ (3.10a)

B

It displays for B=1 some of the characteristics of the
RBC modulus. It is maximal in the middle at L /2 and
drops off towards the value cos(Sw/2) at the ends.
Hence for =1, where R (x =0,L)=0, this problem be-
comes singular. The eigenvalues are

A, =n*—p*. (3.10b)
For the concave modulus profile (3.10a), the effective

diffusion constant is reduced for f< 1 to

D=Dy(1—-p%) . (3.10c)

The lowest lying eigenvalue (3.10b), and with it the
effective diffusion constant, decreases as the amplitude at
the boundaries approaches zero. For the singular situa-
tion R (x =0,L)=0 with =1, the smallest nonvanishing
eigenvalue is A, =3, leading to D =3D,,.

3. Expansion into sin(nmwx /L)
We found that for regular SL problems, for which
R (x)> 0 everywhere, the basis set

|n)=VvV2/L sin (3.1

nr-
L

consisting of the eigenfunctions of (3.2) for the special
case R (x)=const is well suited for the determination of
the lowest eigenvalues. For a singular problem with
R (x =0,L)=0, Legendre polynomials are preferable.
They give rise to a faster convergence in the sequence of
eigenvalue problems that arise with increasing truncation
order of S'and T (3.8). For the basis (3.11), one has [22]

S,m =R —R

nm n—m n+m >

(3.12a)
T,,=m@2n+m)R, ., +mQ2n—m)R,_, ,
Ry="1 ["ax cos [jnx [R(x) (3.12b
iTLJ, J I3 x) . .12b)

Here already the lowest truncation at order 1 yields an
approximation

R,+3R,

D~Dy————
® Ro—R,

(3.13)

for the effective diffusion constant that is, at least for reg-
ular problems, quite close to the exact one and, more-
over, gives physical insight [22].

B. Formulation as a Schrédinger equation
We introduce the function

(x,t)=R (x)p(x,1) , (3.14a)
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so that the phase equation (2.10) becomes

2
x

R

P(x,1)=0 . (3.14b)

Lo, —a2+
DO

Here the curvature of the modulus plays the role of a po-
tential

V= 92R (x)
X R (x)
Its deviation from zero reflects the influence of the ends
on the modulus. The separation ansatz (3.1)

(3.15)

ix,t)=v(x)e ", (3.16)
with  ¥(x)=R(x)p(x), leads to the stationary
Schrédinger equation (SSE)

f 5 'I
[—ai—kV(x)—AZz Y(x)=0, (3.17a)
where

A=-"L" with yOZ%DO (3.17b)

Yo

as before. Again, the lowest lying eigenvalue (‘‘energy”)
governs the long-time relaxation behavior of the (“wave”)
function ¥(x,?) and is used to define an effective diffusion
constant D /D, =min, , ¢A,. The dynamics here is relax-
ational in contrast to that of the time-dependent
Schrodinger equation because the time derivative term in
(3.14) is real. But all the knowledge and experience accu-
mulated in quantum mechanics for the SSE may be taken
over for (3.17).

Within the quantum mechanical picture, one can infer
two important conclusions about the influence of a spa-
tially varying modulus on the phase diffusion without fur-
ther calculation. The ‘“‘ground state energy,” i.e., the
smallest eigenvalue and with it the diffusion constant, in-
creases relative to the reference case V =0, i.e.,
R =const, when finite size effects make the modulus R
convex, i.e., when V becomes positive. Conversely, con-
cave moduli, i.e., negative potentials ¥V, decrease the
*ground state energy” and hence the diffusion constant.
Thus a convex modulus implies D > D, while a concave
profile of R entails D <D,. Of course, if the smallest ei-
genvalue is zero, the latter implication does not hold, be-
cause D is, by definition, determined by the smallest non-
vanishing eigenvalue.

1. Boundary conditions for ¥(x)

We consider here only the two cases: (i) R (x) is posi-
tive everywhere as for TVF and (ii) R (x) vanishes only at
the ends x =0,L as for RBC. Case (i) with a nonzero
modulus requires ¢ =0 at the ends, since with a fixed
number of vortices in the system during the final stage of
the relaxation, the phase does not change at the ends, i.e.,
d(t)=¢(t =) at x =0,L. Hence, y=R¢e=0 is the
boundary condition for case (i). For case (ii) with a van-
ishing R at the ends, the phase ¢(¢) might change there.
But R =0 implies ¥=0 unless the phase change ¢
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diverges which would imply the generation or creation of
an infinite number of rolls. Hence in both cases the ap-
propriate boundary condition is 1)=0 at the ends.

With this boundary condition the SSE describes in the
quantum mechanical language a particle in a one-
dimensional well with infinite potential walls at x =0,L
and a bottom shape given by V(x). The infinite barriers
at x =0, L reflect the boundary conditions ¥(x =0,L)=0.

2. Appearance and significance of a zero eigenvalue

All modulus profiles Ry(x) that vanish at both ends
and are positive elsewhere give rise to a zero eigenvalue,
A=0, with eigenfunction ¥4(x)=R,(x) and associated
constant phase ¥3/Ry=1. On the other hand, when
R (x)>0 everywhere, the boundary condition =0
prevents the existence of a zero eigenvalue—for A=0,
the equation (32¢)/9=(3%R)/R cannot be fulfilled with
R >0 and =0 at the boundaries.

It is instructive to investigate the change in the phase
profile ¢(x)=1(x)/R (x) associated with the lowest ei-
genvalue as the latter approaches zero. To do that, con-
sider our second test problem (3.10) of Sec. III A,

R (x)=cos[Bm(x —L/2)/L], V=—pB%/L?.

The “ground state” eigenfunction for the lowest eigenval-
ue A, =1—p%is ¥,(x)=sin(7x /L) and

sin(wx /L)

x—L/2
B L

Prx)= (3.18)

is the associated phase profile (cf. Fig. 1). As B ap-
proaches 1 from below, the phase profile (3.18) becomes
constant in the bulk of the system. The x range over
which @,(x) drops from 1 in the bulk to zero at the ends
shrinks to zero as f—1. Thus, a modulus R dropping to
zero at the ends triggers the appearance of a zero eigen-
value with a spatially constant phase mode that does not
decay and that allows the pattern to be shifted uniformly
along x —for decreasing amplitudes at the ends, the
phase pinning of the pattern becomes weaker and weaker:
pattern translation costs less and less “energy.”

From a formal point of view one might argue that the
appearance of a zero eigenvalue in the long-time approxi-
mation (2.10) and (3.14) requires—if one insists on not
going beyond the framework of the GLE —including the
time dependence of the modulus. This, however, does
not produce decay of all phase perturbations: Integrating
numerically the full GLE (2.5a) with an initial phase per-
turbation, one easily verifies that any constant spatially
homogeneous part of it does not decay, while the nonuni-
form part decays as predicted by the phase equation
(2.10). In Sec. VB we shall present arguments that the
appearance of a zero eigenvalue which shows up via
nonexponential phase dynamics in fact signals the break-
down of the GLE.
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FIG. 1. (a) Test modulus profiles R (x)=cos[Bm(x

—L/2)/L] (3.10a); (b) associated eigenfunctions & (x)
=sin(mx/L)/R(x) for the lowest eigenvalue A,=D/D,
=1—p2 for B=0 (solid line), 0.9 (long-dashed line), and 0.99
(short-dashed line).

C. Obtaining eigenvalues by a commutation relation

Consider a potential V(x) for which the “Hamilton”
operator

H=—-3+V(x) (3.19)
has a zero eigenvalue

Hiy(x)=0 . (3.20)
Then the potential is related via

V(x)=[32¢5(x)]/tho(x) (3.21)

to the eigenfunction 1y(x) associated to the zero eigenval-
ue. In our context,

Yo(x)=R(x) (3.22)

would be a modulus profile that vanishes at x =0, L.
Introducing a generalized ‘““creation” operator @ * and
an “annihilation” operator Q ~ by

Qt=-— i"ﬁ%’)‘liax , (3.23)
one can write

H=0%Q . (3.24)
Now consider the new operator

H=0"0"=-3+V(x), (3.25)
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2

_ A2 ¢(x) 3, (x)
_ %Yo +2( Yo (3.26)

V =
T ) Jo(x)

obtained by commuting Q* and Q. H is called the
commutation partner [38,39] of H. It is easy to see that
H and H have the same eigenvalue spectra away from
zero, that is, in the equations

77.2
L2

~ o~ 2 ~

Hy(x)= A5, (x), H¢A<x)=xf;¢ﬁx) , (3.27)
A is the same for A > 0. The eigenfunctions are related to
each other by

- _ 2

$,(x)=0 " (x), Q*%(x):x%wx) . (3.28)
Furthermore, Q ~¢y(x)=0 [38], which is _necessary to
fulfill the conditions of vanishing ¥, and ¥, at x =0,L
[38]. Thus, having determined the eigenvalues and eigen-
functions of H, one simultaneously has obtained those of
H.

For our problem we associate with the potential V(x) a

modulus function R (x) via

a2R(x) _

—=V(x)

R (x)

Then we find from (3.26) that all functions R,(x) and
R (x) which are related to each other via

3R 3R, 3.R, |° 9X(1/R,)

= = (3.30)
R R, R, 1/R,

(3.29)

lead to the same eigenvalues A >0. This holds in particu-
lar for the commutation partners

Ry(x) and R(x)=const/Ry(x) . (3.31)

The above equation allows us to identify all positive ei-
genvalues of the phase equation for RBC with those for
TVF when using modulus profiles resulting from analyti-
cal solutions of the GLE (cf. Sec. IV).

D. Numerical methods

The eigenvalue spectrum of the SSE (3.17) can be
determined analytically for special modulus profiles and
in addition approximately, e.g., with a perturbation ex-
pansion around the analytically solvable case (cf. Sec.
IVB2). In general, however, the potential in the SSE
(3.17) reflecting the boundary-induced variation of the
modulus shows a nontrivial x dependence that does not
allow an analytical solution. Therefore, we integrated the
equation numerically for a given potential ¥ (x) using a
shooting method.

For a bounded potential as in RBC, a single shot goes
for a given A from x =0 with ¥(0)=0 and ¥'(0)#0 to
x =L. The deviation from the correct target position
Y(L)=0 vanishes when A matches an eigenvalue. We
have compared our so-obtained results in some cases with
earlier calculations done by Ince [41], who presented a
solution in the form of a continued fraction. Both
methods agree up to the full four digits given by Ince.

When the potential ¥ (x) diverges at the ends as in
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TVF, we make use of particular properties of the solu-
tion. First, the boundary condition ¥(0)=0=(L) re-
quires mirror symmetry of the lowest eigenfunction with
respect to L /2. Furthermore, bounded ¥(x)=¢(x)R (x)
needs at least ¥y~ 1/R (x) near the ends. Therefore, we
shot from the middle of the interval with ¥(L /2)=1,
Y’ (L /2)=0 to a point x =5 close to zero. Then a fit of
the last points extrapolated to x =0 is taken as the func-
tion whose zeros correspond to eigenvalues. Here the re-
sults can be checked for the potential ¥ (x)=2/sin’x — 1
(cf. Sec. IVB 1) and with the solutions of commutation
partner potentials (see above).

We have also investigated how accurate our decoupling
approximation (2.10) is compared with the solution of the
full GLE (2.5). To that end, we integrated (2.5a) using a
Crank-Nicholson method. We found no significant devi-
ations of the long-time behavior of (2.5a) from that of the
phase equation (2.10).

Finally, we numerically solved the full time-dependent
two-dimensional hydrodynamic field equations with real-
istic boundary conditions for the RB and TC geometry
with a finite-difference algorithm (cf. Sec. V). The expli-
cit finite-difference scheme is described in Ref. [36].
However, the solution method for the Poisson equation
was different. Here, the pressure and velocity fields were
adjusted iteratively to each other, as reported in [40]. All
those calculations gave a coherent picture of the diffusive
behavior, which we shall discuss in detail in Secs. IV and
V.

IV. APPLICATION OF THE PHASE EQUATION
TO RBC AND TVF

In this section we first review the stationary modulus
profiles obtained from the GLE for boundary conditions
appropriate to RBC and TVF. Then the influence of
these modulus profiles on the long-time phase dynamics
is discussed within the framework of the phase equation
of Sec. III.

A. Stationary modulus profiles resuiting from the GLE

The GLE (2.5) has stationary phase winding solutions

A(x)=Re'"¥™ (4.1a)
with a phase
o(x)=¢y+(k —k.)x , (4.1b)

describing a pattern with a spatially constant wave num-
ber k only if the modulus is constant,

e—&k—k.)? |

g

4.1¢)

Hence with boundary-induced deviations of R (x) from
(4.1c), the solution (4.1) is not possible. However, one ob-
tains profiles R (x) that satisfy the boundary conditions
with constant phase ¢,—the boundaries cause the family
of the phase-winding solutions (4.1) to collapse to k. [34].

The solutions with constant phase which are discussed
here are found by a transformation of the interval [0,L]



50 PHASE DYNAMICS OF PATTERNS: THE EFFECT OF . ..

to [0,2K]. Here, K(m) is an elliptic integral of the first
kind [42] which is half the periodicity length of the Jaco-
bian elliptic function (JEF). The parameter m €[0,1]
and with it K (m) depend on a=V'eL /&, (2.9), which in
turn is fixed by the particular combination of control pa-
rameter € and system length L. The relation between m,
K(m), and a is

V1—2m for O<a<m

. 4.2
V1i+m for v<a. “2)

a=2K(m)X

The resulting m and K are shown in Fig. 2 as a function
of a.

1. R(x) and V(x) for TVF

For TVF with diverging amplitude at the ends [25], the
JEF’s ds and ns [42] solve the GLE with convex modulus
profiles [cf. Fig. 3(a)]:

172
2 X
R =
| T2m ds 2KL m| forO<a<mw
R (x)= (4.3a)
5 1/2
x
R _ — <a.
= | Tom ns 2KL Im for m<a
(4.3b)
Here,
R_=Ve/g 4.4)

is the modulus in a system of infinite extent. The prefac-
tor in_front of both JEF’s can also be expressed as
(£,/V'g (2K /L)V'2. This shows that R (x) is a function
only of @ and L. The minimal modulus at x =L /2 is

FIG. 2. Parameters m (solid line and left ordinate) and K (m)
(dashed line and right ordinate) as functions (4.2) of
a=VeL /&,.
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1—m

= |2 1—2m

R(x=L/2)= 5 172
x|

R

172
] for 0O<a<m (4.5a)

for m<a . (4.5b)

With a increasing beyond 7, the parameter m rapidly ap-
proaches 1 (cf. Fig. 2) so that already for a=10, the
minimum is larger than R by only 0.34%.

The potential ¥ =(32R)/R corresponding to the above
modulus (4.3),

2
vion== | R,
50 Rec
L, |2ds? ZK% ml+2m—l, O<a<m
2 ns? ZK% m|—m-—1, 7<a,

(4.6)

is positive everywhere and convex [cf. Fig. 3(b)]. The re-
lation (4.6) reflects the fact that R is a JEF solving the
GLE so that (32R)/R is related to R 2.

2. R(x) and V(x) for RBC

For RBC with vanishing modulus at both ends, the
threshold for onset is shifted [32] upwards from
€L =0)=0 to €.(L)=n€}/L* corresponding to
a,.=m. Thus, R (x)=0 for a <, while above the thresh-
old a, one finds the solution [cf. Fig. 4(a)]

172
R(x)=R Tszm— sn ZK% m]
=—§&—2!<—\/msn ZKi’m] . (4.7)
vg L L
The maximal value at x =L /2,
172
Rx=L/2=R, || 4.8)

varies close to a,, i.e., close to m =0, proportional to
(a—a,)'"?, as can be seen from Fig. 2, and reaches R

from below for m —1. The potential ¥ (x) associated
with (4.7),

2
vin=-5 R,
§0 Rw
2K 2
= |2 2 g X —_m —
7 2m sn 2KL m m—1j, 4.9)

has the same formal dependence on R as for the TVF
case. Note, however, that V(x) for RBC is partly con-
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vex and partly concave but negative everywhere [cf. Fig.
4(b)].

For later use we mention here that the potential (4.6)
for TVF is, for a2 7, a commutation partner of the po-
tential (4.9) for RBC: Comparing (4.3b) with (4.7), one
finds

RTVF(X)ZCOHSt/RRBc(X) . (4.10)

3. Comparison with numerical simulations
of the field equations

In Fig. 3 we show a representative example of the
modulus profiles for TVF (4.3b) and in Fig. 4 one for
RBC (4.7) in comparison with the envelope of velocity
fields taken from our numerical simulations (see Sec. V)
of the full field equations. In addition, we show the cor-
responding potentials V' (x) (4.6) and (4.9). Generally one
can say that the modulus profile (4.7) for RBC agrees
much better with that of the simulation than the modulus
profile (4.3) of TVF. This has two reasons: The GLE is a
very good model for RBC [26,27], even if € is not
infinitesimal, while for TVF, the cylindrical geometry
leads to an inflow-outflow asymmetry which strongly re-
stricts the € range of validity of the GLE [22,30]. The
second point is that the boundary condition 4 =0 for

flow amplitude (v/d)

o (b)

v (d?

10 15 20 25
x (d)

FIG. 3. (a) Axial profile of TVF amplitudes. The circles
denote the intensity envelope of the axial velocity field
w(r, +d/4,x) close to its maximum obtained from a numerical
simulation of the full axisymmetric Navier-Stokes equations
with boundary conditions corresponding to rigid, nonrotating
end plates at x =0,L. The solid line represents the solution
R(x) (4.3b) of the GLE scaled so as to coincide with w at
x =L /2. (b) Potential ¥ (x)=[32R (x)]/R (x) (4.6) correspond-
ing to the modulus profile of the GLE. The parameters are
1=0.75, €=0.0167, L =25d, and a=12.10.

[ J
(84}
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RBC is fulfilled also at larger €, whereas 4 =« for TVF
need not be the correct one for higher € [25]. For these
reasons we always use in the RBC case the theoretical
R (x) (4.7) as input into the phase equation. In the TVF
case we also use for R (x) a fit to the final stationary TVF
amplitude profiles from our numerical simulations.

B. Effective diffusion constants

Here we determine the spectrum of eigenvalues and in
particular the lowest ones of (3.2) and (3.17) by using the
analytical modulus profiles resulting from the GLE. For
RBC with a modulus (4.7) that drops to zero at both
ends, there is a zero eigenvalue which does not occur for
TVF. However, apart from that, all positive eigenvalues
in the RBC and TVF case are identical when a = 7 be-
cause of the commutation relationship (3.31) of the
moduli (4.10). Hence, having obtained the effective
diffusion constant from the smallest nonvanishing eigen-
value, e.g., for the RBC modulus, we also have the
diffusion constant for the TVF case, or vice versa.

1. Eigenvalues for a=m

The complete eigenvalue spectrum of the phase equa-
tion can be determined analytically at a=m, i.e., m =0

N

z
X
Q
=
1
5
z
=
O ]
y
>
_2 . .
15 20 25
x (d)

FIG. 4. (a) Lateral profile of RBC amplitudes. The circles
denote the intensity envelope of the vertical velocity field
w(x,z=d/2) at midheight of the fluid layer obtained from a
numerical simulation of the 2D Oberbeck-Boussinesq equations
with a linear vertical temperature variation imposed at the ends
at x =0,L. The solid line represents the solution R (x) (4.7) of
the GLE scaled so as to coincide with w at x =L /2. (b) Poten-
tial ¥ (x)=[82R (x)]/R (x) (4.9) corresponding to the modulus
profile of the GLE. The parameters are Pr=1, ¢=0.035,
L =25d, and a=12.15.
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and K =m/2. There the modulus of RBC vanishes with
m —0, while its profile

sn(2Kx /L|m)—sin(7x /L) ,
so that
[0,R (x)]/R (x)—(m/L)cot(mx /L) .

For the TVF case one has R (x)~1/sin(7x /L) at a=.
Thus,

ﬂz e

_ 2
L7 T

Vipc=— —_——1|, 4.11)
RBC sin?(mx /L)

and the reduced eigenvalues of H=—32+V(x) (3.17)

are
A, =n?—1, 4.12)

where n =1,2,... for RBC and n =2,3,... for TVF.
The eigenfunctions are

_ [ln) for RBC (n=1,2,...)

n— Q—In) for TVF (n =2,3,...), (4.13)
with [n ) =Vv2/L sin(nmx /L) and
J, R
+— x n __|= x N |
Q R RBC—ax LCOt 'rrL 9,
(4.14)

Here we have used Hrpc=Q1Q ™ and Hryg=Q Q™.
Note the different normalization of the eigenfunctions in
(4.13).

The effective diffusion constant obtained in both cases
from A,=3,

D(a=m)=3D, , (4.15)

is three times as big as in an unbounded system. Note
that (4.15) is an exact result of our phase equation for
moduli profiles of the GLE.

2. Solution for arbitrary a

While for a=m, where the JEF’s degenerate to tri-
gonometric functions, an exact analytical result is avail-
able, we have solved the general case a7 numerically.
As an aside, we mention that we have also evaluated the
eigenvalues for a7 with a straightforward perturbation
expansion around a=m. We found that this approxima-
tion breaks the commutation partnership of RBC and
TVF: The lowest RBC eigenvalue no longer vanishes for
a> 7 and the higher ones of RBC and TVF differ within
lowest order perturbation theory. The latter, by the way,
agrees better for TVF than for RBC with our numerical
results (cf. below)—the deviation of D /D, at =10 is
0.6% for TVF and 20% for RBC.

The numerically exact solution of the eigenvalue prob-
lem (3.17) with the potentials (4.6) and (4.9) was obtained
with a shooting method, as described in Sec. III D. For
TVF, the two branches, a <7 and a > 7, were checked
against each other using the relation
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ds¥(x|m)=ns*(x|m)—m

Ref. [42]. A further test for a = 7 is that the nonzero ei-
genvalues of TVF and RBC have to be identical due to
the commutation relation. The numerical data coincide
up to 1077, the precision of the integration scheme.

The effective diffusion constants resulting from the nu-
merically obtained lowest eigenvalue of (3.17) are shown
in Fig. 5. For TVF the full range of a starting at a =0 is
applicable, albeit experimentally realized parameter com-
binations are a2 10. For RBC, a has to be above the
threshold for onset, @, =#. The limiting value for van-
ishing a, meaning € going to zero for a short container
length, is D/D, (a—0)=3.3833 [41]. This is also the
overall maximum. The curve is strictly decreasing with a
turning point at a=m, D/Dy=3. For high a, say,
a =20, a good approximation is given by

12.8261

D /Dy (a—o0)=1+ =102
o

The function approaches 1 very slowly. Even for a =100,
which is higher than in all experimental setups in the
literature, D lies with 5% detectably above D,.

Let us summarize the main predictions of our theory of
the long-time phase dynamics based upon Egs. (2.10) and
(3.14) together with the JEF modulus profiles of the sta-
tionary GLE:

(i) The phase dynamics depends only on the parameter
a=VeL/ £, but not on € and L separately.

(i) For a fixed common a, the spectrum of the positive
eigenvalues of the phase equation is identical for the RBC
and TVF modulus profiles given by JEF’s.

(iii) The long-time exponential relaxation of the phase
governed by the smallest nonzero eigenvalue is markedly
enhanced by the boundary-induced amplitude variation

0 n n L " n L n I n L
o 1 10 20 30
0L=55”2L/§0

FIG. 5. Effective diffusion constants D /D, for RBC and
TVF in finite systems as function of a=V'eL /£, obtained by
numerical integration of the eigenvalue equations (3.17) with
potentials taken from the GLE [(4.6) and (4.9)]. The arrow
marks a=1m where D /Dy, =3 is known analytically. For a<mw
there exists TVF but no RBC.
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as compared to the unbounded system—the effective
diffusion constant D is for experimentally relevant pa-
rameters significantly larger than D, e.g., D/D,=1.35
at a=20.

(iv) For the RBC modulus profile which vanishes at the
sidewalls, a zero eigenvalue appears. Then within the
phase equation (2.10) as well as within the full GLE dy-
namics of (2.5), a spatially constant contribution to the
initial phase perturbation does not decay.

In Sec. V we discuss how results (i)—(iv) help under-
stand and explain experiments and numerical simulations
of the full field equations and how well they agree.

V. COMPARISON WITH EXPERIMENTS
AND NUMERICAL SIMULATIONS

After having discussed our theory of the long-time
phase dynamics, we shall compare in this section the pre-
dictions of the phase equation using GL amplitude
profiles as input with experimental results available in the
literature and with our own numerical simulations. For
the sake of a detailed comparison and investigation of the
long-time phase dynamics, we decided to solve the full
hydrodynamic field equations for the TC system as well
as for the RB system numerically with a finite-difference
algorithm [36,40]. In particular, for RBC these simula-
tions turned out to be very fruitful in elucidating the
consequences of the existence of a zero eigenvalue in the
GLE and in interpreting the experimental results. We
shall start with the less complicated TVF.

A. Taylor-Vortex flow

1. Experiments

The experimental setup and procedure that Gerdts [19]
used to characterize the long-time relaxation of the vor-
tex positions have already been described in Sec. II. He
used cylinders of radius ratio =0.5 with different
lengths L /d =8.3, 12.3, and 20.3. In each case the outer
cylinder was stationary and the annulus was closed by
two nonrotating end plates. He showed that the relaxa-
tion time increased with growing L and decreasing € and
that the equilibration process was of diffusive nature.
The underlying universal physical law becomes clearer
when considering the data as a function of a.

So, in Fig. 6 we compile in a plot of D /D versus a all
data of his work (open symbols) which are compatible
with our restrictions that the variation of the local wave
number is negligible and that the deviation of the final
bulk wave number k from k_ is small. For the normaliza-
tion of the experimental data, we used the theoretical
diffusion constants D(€,k) determined by Riecke [7] for
TVF patterns with uniform final wave number k in an un-
bounded TC system of radius ratio n=0.5. Except for
one experimental runaway (D/D,=4.8 at L =12.4d,
€=0.002, a=2.1), which lies far outside the plot range,
the Gerdts results covering an a range up to 80 thread
along the full theoretical line in Fig. 6. The latter follows
from the phase equations (2.10) and (3.14) with the TVF
modulus profile (4.3) resulting from the analytical solu-
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FIG. 6. Effective diffusion constant D /D, of TVF patterns in
finite systems versus a="V'eL /&o. The solid circles result from
our numerical simulations of the full axisymmetric NSE in TC
setups of length L =25d and radius ratio 7=0.75. The open
symbols denote experimental results of Gerdts [19] in systems of
length L /d =8.3 (circles), 12.3 (squares), and 20.3 (triangles)
with 7=0.5. The open diamond with its error bar is the result
of Wu and Andereck [20] for kK =k.. The solid line represents
our phase equation theory (Fig. 5) with modulus profiles R(x)
(4.3) of the GLE taken as input. D, is the phase diffusion con-
stant in the corresponding unbounded setups as described in the
text.

tion of the GLE. While for small a the experimental
diffusion constants seem to lie below the full line they
show a clear enhancement over D, by factors up to 2.

We are aware of one further experimental work, by Wu
and Andereck [20], where the phase of Taylor vortices is
perturbed by end plate motion. However, the authors an-
alyzed the relaxation behavior by an error function rather
than exponentials so that their result is affected by more
than the smallest eigenvalue. In a system of a=65,
7=0.882, they report for a TVF pattern with the critical
wave number an effective diffusion constant
D /D;=0.93%0.10 (open diamond in Fig. 6), while our
theoretical value would be 1.08. All their other diffusion
coefficients are obtained for patterns with wave numbers
away from k_, (0.09 = |k —kCI <0.36). Nevertheless, we
find it surprising that for all of them, D /D, is below 1,
albeit with large error bars. The response to a periodic
phase disturbance that was investigated experimentally in
the same reference [20] will be discussed in Sec. V1.

2. Numerical simulations

In our simulations we solved the time-dependent ax-
isymmetric Navier-Stokes equations (NSE) in the r-x
cross section of the annulus between a rotating inner
cylinder, a nonrotating outer cylinder, and nonrotating
rigid-end boundaries at x =0, L, using an explicit finite-
difference scheme described in [36,40]. The radius ratio
7n=0.75 and the system length L =25d were kept fixed
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for all runs. Varying € between 0.017 and 0.207, we
covered the range 12.1<a <42.2. In direct analogy to
the experimental procedure of Gerdts [19], we monitored
the time evolution of the vortex positions after a small
movement by 0.2d of an end plate. The long-time
diffusive character of the phase dynamics and the fact
that it is dominated by one spatial mode were explicitly
checked by investigating the relaxation behavior of
several vortex positions. Typically the long-time relaxa-
tion rate y_;, of the vortex positions was determined
from an interval of 450 to 500 radial diffusion times after
the movement of the end plate. The resulting effective
diffusion constant D =y, L%/7? was reduced by the
theoretical value Dg(€,k) [7] for relaxation in an infinite
system to a pattern with spatially constant modulus and
constant wave number k. Here k was taken as the nu-
merical wave number in the bulk of our finite system.
Our numerical bulk wave numbers differed at most by
7% from the critical one, k..

The effective diffusion constants from the numerical
simulations (solid circles in Fig. 6) lie consistently below
the solid curve. The reason for this shortcoming of the
phase equation with modulus input from the GLE seems
to be the GLE modulus rather than the phase equation
itself —the deviation of the GLE modulus from the nu-
merical intensity profile of, e.g., the axial velocity field
w(r=r;+d/4,x) is quite obvious in Fig. 3(a). The
above hypothesis was tested in two different ways: First,
instead of using in the JEF (4.3) the parameter m as fixed
by our specific numerical € or a values, we treated m as
an arbitrary fit parameter. Its optimal value was deter-
mined by a best fit of R (x) (4.3) with weights varying in-
versely with the distance from both ends to the numeri-
cally obtained intensity profile of w. Inserting this fitted
modulus into the phase equation, the resulting diffusion
constants practically agreed with the solid dots in Fig. 6.
The deviation is ~5% for small a and shrinks continu-
ously to values less than 1%. Second, we compared with
results of previous work [22]. There the input modulus
into the phase equation was obtained from a cubic spline
through the extrema of the simulated radial velocity field
with a vanishing second derivative at the ends that led to
finite moduli there. The resulting effective diffusion con-
stant D/Dy=1.19 [22] for a=20.12 (¢=0.047) com-
pares well with D/D,=1.23 from the full numerical
simulation, where D /D;=1.32 is the theoretical value
with the GLE modulus.

From all this we conclude that the phase equations
[(2.10) and (3.14)] properly and quantitatively describe
the long-time TVF phase dynamics provided the right
modulus profile R (x) is used as input.

B. Rayleigh-Bénard convection
1. Experiments

Croquette and Schosseler [17] performed experiments
to demonstrate the applicability of a diffusion equation
for describing the long-time phase dynamics of RBC.
They enforced a convection pattern with a spatially vary-
ing wave number by shining powerful light through an
appropriate grid onto the convection cell, i.e., by impos-
ing temperature variations that were an image of the
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grid. After removal of the light source, the bulk pattern
evolved into regularly spaced rolls. From this time evo-
lution the authors inferred effective diffusion constants
D =0.76D and 0.83D, in a slightly different setup.

For the same parameters (€=0.6, L =20, a~40) the
phase equation with the GL modulus input yields beyond
the zero eigenvalue an exponential time relaxation, lead-
ing to an effective diffusion constant D =1.14D,. We-
shall now investigate this seeming discrepancy between
experiments and phase equation approach by analyzing
in detail numerical simulations of the field equations. In
particular, we want to elucidate the question of whether
and how the zero eigenvalue in the GL dynamics also ap-
pears in the full field equations.

2. Numerical simulations

For the RBC system we solved the 2D velocity and
temperature field equations in Oberbeck-Boussinesq ap-
proximation in a vertical cross section of the fluid layer
perpendicular to the axes of the convective rolls. The
Prandtl number of the fluid was Pr=1. At the rigid la-
teral boundaries we imposed the linear vertical conduc-
tive temperature profile between the hot bottom plate and
the cold top plate. Thus the amplitudes of the velocity
field as well as of the convective temperature field vanish
there. Consequently, the phase of the pattern is not fixed
and the mechanism to generate phase perturbations by
end walls does not work properly. Instead, we induced a
continuous phase perturbation that was largest in the
center and decreased towards the ends, causing an inho-
mogeneous sidewards displacement of the whole pattern
in the positive x direction, as shown in Fig. 7(a) by the lo-
cal deformation Ax versus x. In this way rolls in the
right (left) part of the system are squeezed (stretched) as
indicated in Fig. 7(b). There we plot the initial, perturbed
distances x, —x,_,, between adjacent node positions of
the vertical velocity field w(x,z =1,  =0) at midheight
of the fluid layer versus (x, +x,_,)/2. The node posi-
tions x, locate the roll centers.

The typical response to this initial perturbation is
shown in Fig. 8 for a system of L =25d with 25 convec-
tion rolls. There the time evolution of the tenth node po-
sition, x4, is shown over 13000 vertical diffusion times
d?/k corresponding to 20 lateral diffusion times LZ2/k.
Three values of € are chosen to demonstrate the varying
ranges of different dynamical behavior. Consider first the
solid line when € is smallest. After a short period of
strong decrease of xy(¢#) which is finished at about
t =20d%/k, the rolls move linearly for nearly 8000
diffusion times. Eventually, the space-time curve x,(¢)
bends and, taking more and more exponential shape, re-
laxes towards the final position. Both the speed of the
linear motion vy, and the final decay rate ¥ are extremely
small. If one increases € to 0.035 (long-dashed lines), this
behavior goes faster and, in particular, the range of linear
motion is squeezed. For €=0.1, it is hard to detect such
a linear motion: The node position seems to relax im-
mediately exponentially. At first sight one is tempted to
identify the ultra-long-time decay rates ¥ appearing, e.g.,
for €=0.015, around 10000 diffusion times with a
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FIG. 7. Phase deformation of a RBC pattern in a system of
length L =25d: (a) Initial shift Ax of the pattern, (b) resulting
initial distances x,—x,_, between adjacent nodes of
w(x,z= %), and (c) restoring velocity vy, of the node positions
in the time interval of linear motion (cf. the text).

diffusive eigenvalue. The rates, however, are much too
small compared with ¥, (cf. Table I). A more important
argument against a diffusive behavior is that the ultra-
long-time relaxation contains only a single spatiotem-
poral mode, whereas diffusion contains several modes
(2.3) with decay rates increasing quadratically with the
mode index—attempts to fit x,(z) with more than one
exponential function failed.

We think that the proper (higher) diffusive modes can
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FIG. 8. Relaxation of an initial phase perturbation (cf. the
text and Fig. 7) in RBC obtained from numerical simulations of
the full field equations for Pr=1 with rigid sidewalls at x =0
and 25d. There we imposed vertically the linear conductive
temperature profile with €é=0.015 (solid line), €=0.035 (long-
dashed line), and €=0.1 (dashed line), or we imposed a perfectly
heat isolating boundary condition 3, T =0 for €=0.015 (dotted
line). We plot the position x4(¢) of the tenth node of the verti-
cal velocity field at midheight corresponding to the center of the
tenth roll. The insert magnifies the strong changes within the
first 100 vertical diffusion times.

be identified by carefully analyzing the first 100 vertical
diffusion times and that all subsequent events in Fig. 8
can be explained as consequences of the presence of a
zero eigenvalue in the phase equation (3.2). A zero eigen-
value implies that a spatially homogeneous phase pertur-
bation, once introduced into the system, is not damped
within the frame of the phase equation (3.2) and also of
the GLE (2.5) as discussed in Sec. III B2. Indeed, if one
integrates numerically the GLE (2.5) with an initially
nonuniform phase profile, one can see diffusive relaxation
with spatiotemporal modes as predicted by the phase
equation (3.2). But any constant part of the initial devia-
tion is not carried away at all. Thus, in the system de-

TABLE I. Velocity of the linear motion vy;,, ultra-long-time relaxation rate 7 of the 14th node posi-
tion, and effective diffusion constant D obtained from numerical simulations of RBC with rigid
sidewalls imposing the conductive temperature profile there. The values in parentheses result from an

initial perturbation which has half the strength.

a € vy (107¢/d) 107 /v, D/D,
8.0 0.015 1.4 (0.73) 0.43 2.16 (2.16)
8.6 0.015 0.63 2.06

10.3 0.025 3.9 (1.9) 1.3 (1.2) 1.84 (1.86)
12.1 0.035 6.3 (6.1) 22 (2.4) 1.69 (1.71)
14.5 0.05 13.5 (12.9) 3.9 (4.5) 1.54 (1.58)
17.8 0.075 8.7 (8.7) 1.60 (1.64)
18.9 0.1 12.5 1.70

20.5 0.1 13.3 (13.3) 1.52 (1.66)
222 0.1 14.2 1.56

29.0 0.2 28.6

40.2 0.383 49.5
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scribed by the full field equations, there must be a restor-
ing mechanism which is not captured by the GLE. It
drives—after the higher spatially varying diffusive modes
of the initial phase perturbation have died out—the
remaining spatially homogeneous bulk part of the roll
displacements into a global, almost constant, restoring
motion. Its speed is almost constant in space [cf. the bulk
part of Fig. 7(c)] and time [cf. the linear range of x 4(#) in
Fig. 8] because of the zero eigenvalue that would allow a
perfectly free motion within the GLE. Eventually, when
the rolls approach their final position, the motion is
slowed down until the equilibrium state is reached that
was prepared prior to the phase perturbation. The
reason for all this behavior seems to be an interaction be-
tween the phase and the lateral borders in the full system
which prohibits a roll from being pushed out of the sys-
tem. The strength of that interaction responsible for the
linear motion and the final overdamped approach to the
equilibrium position depend on the system parameters €
and L, as one can infer from Table I. There we have
compiled the speed of a particular roll position in the
range of linear motion, vy, and its ultra-long-time relax-
ation rate 7. While 7 is almost independent of x, i.e., the
same for every roll, vy, varies slightly along x and in-
creases towards the region of largest initial compression
[cf. Fig. 7(c)]. Since the entire behavior lies beyond the
GLE, we are not able to make theoretical predictions
about the dependence of ¥ or vy, on € and L.

Prior to this ultraslow long-time dynamics, as a conse-
quence of the zero eigenvalue of the GLE, it is possible to
analyze the dynamics related to the higher, diffusive ei-
genvalues of Egs. (2.10) and (3.14). In order to eliminate
most of the global motion, we now investigate the tem-
poral behavior of the distance between two adjacent
nodes. We fit the data of Fig. 9 beyond an initial time in-
terval of about 20d%/k to an exponential plus a longer
lasting function—a linear one or an additional exponen-
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FIG. 9. Adjustment of the local wavelength in RBC taken
from numerical simulations of the full field equations. The plot
shows the deviation AA(¢) of the local wavelength from its final
value A(t— ) determined from the difference between the
tenth and the ninth node positions of the vertical velocity field.
The parameters and line types are the same as in Fig. 8.
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tial corresponding to the ultraslow behavior in Fig. 8.
The relaxation rate of the first exponential gives us
D /D,. To check for nonlinear dependences on the initial
phase perturbation, we have made a second series of
simulations where the initial perturbation was half of that
before. In Table I, the resulting values are printed in
brackets. The speed of the linear motion, vy;,, deviates up
to a factor of 2, which seems to indicate a nonlinear
force. On the other hand, with 7 and D differing only by
few percent, these exponential dynamics suggest a linear
mechanism.

In Fig. 10 we have plotted the effective diffusion con-
stants D /D, obtained in the above-described way from
our simulations of the full field equations together with
the theoretical curve (cf. Fig. 5) that represents the lowest
nonvanishing diffusive eigenvalue of the phase equation.
The lower part of Fig. 10 shows the ultra-long-time relax-
ation rates 7 /y seen in our simulations. The solid sym-
bols are the results of simulations where, by imposing the
conductive state at the lateral boundaries, the convective
amplitudes of all fields were enforced to vanish there.
The relatively large error bars of the D /D, data come
from the behavior of different nodes and reflect the com-
plicated extraction method. For €>0.1, it is impossible
to filter out D because the diffusive relaxation becomes
comparable to 7.

At this point, we come back to the experiment of Cro-
quette and Schosseler [17]. Now their result,
D/Dy,=0.76 and 0.83, can be understood as effective
ultra-long-time relaxation rates ¥ /vy, (stars in Fig. 10)
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FIG. 10. Relaxation rates of phase perturbations of RBC in
finite systems versus a=VeL /&, Numerical simulations of the
full field equations for Pr=1 with the conductive temperature
profile imposed at the lateral boundaries gave the solid circles
for L =25d, solid squares for L =27d, and solid triangles for
L =23d. The open circles represent a run for L =25d with per-
fectly heat isolating boundaries. The stars come from the exper-
iment [17]. The rates labeled D /D, in the upper part were ob-
tained on the scale of about 100 vertical diffusion times and are
identified by comparison with the phase diffusion theory of Fig.
5 (solid line) as coming from the smallest nonvanishing diffusive
eigenvalue. The rates labeled 7 /¥, in the lower part refer to
ultra-long-time dynamics whose appearance is linked to the ex-
istence of a zero eigenvalue of the phase equation (cf. the text).
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caused by the zero eigenvalue. In our numerical simula-
tion with the conductive state imposed at the boundaries,
we got for the same a a relaxation rate 7 /y(,=0.5. Since
7 does not seem to be a function of a=¢€!"%L /&, but
rather of €/L, the different € values could have produced
the deviation. Furthermore, in an experimental setup the
vertical temperature profile at the lateral boundaries is
never the pure conductive one as used in the above simu-
lations. Instead, a heat isolating condition 3, T'=0 might
be more appropriate if the Prandtl number of the fluid is
not too high. Therefore, we also simulated perfectly heat
isolating boundary conditions (dotted lines in Figs. 8 and
9 and open circles in Fig. 10). The main result is a larger
long-time relaxation rate ¥ which is ~ 10 times faster
than in the case of Dirichlet boundaries for 7. As a
consequence, the extraction of the nonzero diffusive ei-
genvalues becomes extremely difficult.

We finally should like to mention that the case of rigid
heat isolating boundaries cannot be treated properly
within our phase diffusion equation since it is based on
the assumption that velocity and convective temperature
fields can be described by one amplitude only, and this is
not the case near a heat isolating rigid sidewall.

VI. PHASE WAVES GENERATED
BY PERIODIC FORCING

So far, we have studied the relaxation of an initially ap-
plied phase perturbation after, e.g., the movement of an
end plate. However, recently experiments have been re-
ported to determine the diffusion constant by imposing a
time-periodic disturbance on the system. Wu and An-
dereck [20], working on TVF, replaced the single-step
motion of an end plate with a continuous sinusoidal
motion. On the other side, Wesfreid and Croquette [16]
injected a vertical, time-periodic stream into the middle
of their RB container. Both groups based the analysis of
their measured response on the simple diffusion equation
(2.1) with homogeneous pattern amplitude and got a
value for the diffusion constant close to the theoretical
one, D,

This analysis uses the fact that in the idealized equa-
tion (2.1) for a homogeneous modulus, a time-periodic,
spatially localized forcing of the phase generates a
damped phase wave propagating away from the perturba-
tion. The experiments then can measure two different
and independent quantities characterizing such a type of
phase response to a periodic forcing: (i) the local decay
length of the amplitude of the damped phase wave that is
emitted from the periodic perturbation source and (ii) the
local wavelength of the phase wave. The simple diffusion
equation (2.1) predicts that both lengths are the same and
space-independent:

Ho'=(2Dy/w0)?, 6.1)

in a semi-infinite system, and that they are given by the
diffusion constant D, and the frequency w of the modula-
tion. The experimentally obtained decay lengths differed
slightly from the wavelengths but the differences were
within the error bars of the measurements.

It should be noted, however, that the dynamical prop-
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erties of damped phase waves emitted by periodically ap-
plied forces are in general—if the governing equation for
the phase is not an ideal diffusion equation—unrelated to
and different from the free diffusive relaxation of an ini-
tially prepared phase perturbation.

A. Finite size and amplitude variation effects

Here we investigate the effect of a finite system size and
the consequences of a spatially varying pattern intensity
R (x) on the phase waves generated by a periodic, spatial-
ly localized perturbation of the phase. We treat a situa-
tion described by Eq. (3.17) where the periodic modula-
tion basically affects only the phase, while the modulus
R (x) of the pattern amplitude and with it the potential
V(x)=R"(x)/R (x) remain stationary. With the bound-
ary condition

¥(0,t)=cos(wt) (6.2a)

reflecting a sinusoidal perturbation at x =0, one obtains
from (4.17) in the long-time limit a purely periodic
response for ¥(x,t)=R (x)¢(x,t) with the forcing fre-
quency :
Y(x,1)=19(x)expliot)+c.c.

=2|9(x)|cos[wt +x(x)] . (6.2b)
The complex oscillation amplitude J(x):llzf\(x)lei"""
obeys the equation

[i£—8§+V(x) P(x)=0, (6.2¢)
Do

with the boundary conditions
$(0)=1, $(L)=0. (6.2d)

1. Two test problems

To get a feeling for the effect of a spatially varying
modulus R (x) of the pattern under periodic perturba-
tion, we consider first profiles like the test problems (3.9a)
and (3.10a) treated in Sec. III A2. For these modulus
profiles the potential is constant, V' (x)=V, and the solu-
tion of (6.2¢) is

sinh[#(L —x)]

P(x)=1 = (6.3a)
°  sinh(AL)

The characteristic exponent

F=1vV+iw/D, (6.3b)
is complex with real and imaginary parts:
e | |7 | [

" 2 o 2 ’ '

and

R 2= P2 +w?/D} . (6.3d)

The solution (6.3) most clearly reveals (i) finite size effects
and (ii) the effect of an amplitude variation of the pattern
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represented by a nonzero V(x). T (L)
Consider first the effect (i): Only for e ~ >1is
the solution [(6.2b) and (6.3)] a damped phase wave:

P(x,t)=const Xe 7{’Xcos((ot —F:x), (6.4)
with an x-independent spatial decay rate %, and an x-
independent wave number %;. Otherwise, the decay rate
of |#h(x)| as well as the wave number —3d,x(x) are not
constant.

(ii) Only when amplitude variations are ignored by set-
ting ¥ =0, i.e., only in the limit of the simple diffusion
equation, is #, =%, =%,=1 w/2D,. Yet, with

sinh[(1+)F (L —x)]
sinh[(1+i)FH,L]

~

_1
P(x)= 5

(6.5)

the wave number and the decay rate still vary with x if
H (L —x) is not large enough. A nonvanishing potential
V, on the other hand, causes # , to be different from % i
In particular, for the convex text profile

R (x)=e'—x/l+e—(L —x)/1

(3.9a) that looks somewhat similar to that of TVF, one
has V=1/12 _Then the decay rate %, is larger than the
wave number 7¢;. However, for the concave test profile

R (x)=cos[Bm(x —L /2)/L]

(3.10a) which shows some similarity to RBC, one has
V'=—pB*m*/L? and consequently %, <#,. These exam-
ples show the main features that can be seen also for
space-dependent potentials ¥ (x)=R''(x)/R (x): a local-
ly convex modulus tends to decrease the local wave num-
ber of the phase wave and to increase the decay rate and
vice versa for a locally concave R (x).

2. Phase waves under the JEF modulus of the GLE

We now investigate RBC with the potential (4.9) that is
given in terms of a JEF following from the solution of the
GLE. Then Eq. (6.2c) takes the form of a Lamé equation
[37,43]:

2

R K N
92 —2m snz(ylm)—m—1+-;- K—(O’:)— ¥(y)=0,
(6.6a)
y=2K(m)x/L . (6.6b)
Its two fundamental solutions are
Ty ¥
¢1,2<y>=WexP[iy2(y*|m)], (6.7a)
where y* is the characteristic root of
2
i | H
dnz(ylm)=—(2m+1)~é E(O:—) (6.7b)

Here, H, ®, and Z are elliptic functions [42]. The solu-
tion (6.7a) is nearly a complex exponential function dis-
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torted by the additional elliptic functions, which
represent the influence of the boundary condition on the
phase wave. Since

H(y|m)/®(y|m)=sn(y|m) ,

this prefactor has a shape similar to that of the modulus
function R (x).

B. Comparison with experiments

1. Rayleigh-Bénard convection

First we discuss and compare with the very carefully
performed experiments of Wesfreid and Croquette [16].
They extracted in a RB system of length L =30d the
wave number of the observed phase wave from a linear
best fit to its phase shift. The decay rate was obtained by
fitting the magnitude of the phase perturbation to a sim-
ple exponential function. Both fits were done in a range
between 2d and 8d away from the source of the perturba-
tion. The wave source was in the middle of their cell.
These experimental quantities thus have to be compared
with the imaginary and real parts of the logarithmic
derivative

H(x)=—03,Inh(x)=—3 In|P(x)|—id, x(x)  (6.8)

of the complex amplitude $=|$|e’¥ that solves (6.2).
The real part %, = —3,In|%]| is the local decay rate of the
modulus and the imaginary part #;= —9d, Y is the local
wave number of the phase wave (6.2b). Note that #,(x)
and #;(x) approach ¥, for a pure diffusion equation in a
very long system, e.g., for ¥ =0 one finds from (6.5)

H(x)=(1+i)Hcoth[(1+HL —x)], (6.9

so that # equals (1+i)%, plus exponential corrections of
size exp[ —2H (L —x)] for large # (L —x). However,
for the experimental setup [16] these two idealizations do
not really apply: (i) The rigid sidewall is only 15d away
from the source so that the effective length of the system
is reduced to L.s=15d, and (ii) for the container length
L =30d the parameter a=31.16 is small so that the
sidewall-induced variations of the convection amplitude
require going beyond the simple diffusion equation V=0
and incorporating ¥ (x) properly in (6.2c) or in the Lamé
equation (6.6).

In Fig. 11 we show for two modulation frequencies
®=0.15«c/d? (top row) and 0.66(x /d?) (bottom row), the
real part (solid lines) and the imaginary part (dashed
lines) of #(x) (6.9) for the solution (6.5) of the idealized
diffusion equation, ¥ (x)=0, in comparison with % (x) re-
sulting from the Lamé equation (6.6) with the sidewall-
induced potential ¥ (x) given in terms of the JEF for
R (x). Here x is the distance from the wave source where
the periodic phase perturbation is enforced. To compare
with [16], we have used in Eq. (6.9) the effective propaga-
tion length L =154 available for phase waves in that ex-
periment with total length L =30d, €=0.16, a=31.2,
Pr=492, and D,=2.92k. For the smaller frequency,
HoL.g=2.4 is so small that differences between %, and
H; resulting from the diffusion equation are visible al-
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FIG. 11. Local decay rates #,(x) (solid lines) and wave num-
bers #;(x) (dashed lines) of damped phase waves generated by
periodic perturbations of frequency w=0.15x/d? [(a) and (b)]
and 0=0.66k/d? [(c) and (d)] versus distance x from the source.
In the Lamé equation (6.6), sidewall-induced variations of the
convective amplitude R (x) are incorporated via the potential
V(x). In the diffusion equation V=0, they are not. The sym-
bols with vertical bars are spatial averages and standard varia-
tions of ¥, (circles) and #; (triangles) over the interval indicat-
ed by thick braces. We used the parameters €=0.16, a=31.2,
Pr=492, D;=2.92«, L =30d, and L =L /2 of the experiment
[16]. See the text for further details.

ready in the range 2d <x < 8d marked by thick braces in
Fig. 11 where the experimental data were fitted. For the
larger frequency, #,L.=5.0. The differences are too
small to be seen in the fit range. The spatial averages
(H(x)) over the interval (2d,84), i.e., the quantities that
one would obtain with the employed fit procedure, are
shown by solid symbols (circles for {(#,) and triangles
for (#,)) together with their standard variations (verti-
cal bars). Since, with increasing distance from the wave
source, #,(#;) rapidly approaches + o (0), at the end,
x =L g, of the system, the fitted values sensitively depend
on the choice of the fit interval if %L 4 is too small.

Comparing the result of the diffusion equation with the
Lamé equation, one sees that incorporating the variation
of R (x) in the latter causes a stronger variation of #(x)
with additional extrema: close to (further away from) the
wave source, %, is shifted upwards (downwards) and vice
versa for #;. Both are a consequence of the term
H(y ¥y*)/0O(y) in formula (6.7a). The characteristic
root y* breaks the midline symmetry at x =L /2 of the
JEF sn(y)=H(y)/®(y). Thus, the simplified argument
with the concave test profile (3.10a) which yields #, <%
is not valid there. However, the spatial averages over the
marked region fulfill such a relation by accident for the
smaller frequency.

In Fig. 12 we have plotted the averaged decay rates
(#,) (circles) and wave numbers (%) (triangles) from
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FIG. 12. Spatial averages of the local amplitude decay rate
(#,(x)) (circles) and of the local wave number (% ,(x)) (trian-
gles) of phase waves versus the logarithm of the frequency. The
open symbols come from experiments [16] and the solid symbols
from the Lamé equation (6.6) where sidewall-induced variations
of the convective amplitude R (x) are incorporated via the po-
tential ¥ (x). The parameters for the experiment and the Lamé
equation are the same (cf. Fig. 11). The spatial average is taken
over an interval (2d,8d) away from the wave source, as indicat-
ed in Fig. 11. The vertical bars are standard deviations.

the Lamé solution (solid symbols) for different frequen-
cies in comparison with the result of [16] (open symbols).
Taking into account the large error bars of the experi-
ment, it is impossible to decide whether the spatially
averaged data are better represented by the Lamé equa-
tion (6.6) or the diffusion equation (2.1).

2. Taylor vortex flow

We also applied Eq. (6.2) to the TVF case. Since we do
not know a closed analytic solution as in RBC, we solved
Eq. (6.2c) numerically. For the parameters 7=0.882,
L =70.4d, €¢=0.074, «=70.9, and w=2.54X 10" 2v/d?
of Wu and Andereck [20], we integrated Eq. (6.2c) with
V(x) calculated from an envelope R (x) of the axial ve-
locity component of the solution of our full 2D NSE. As
in RBC, we find in the region where the experimental
data are taken, a phase wave with % (x)=~%, and
H (x)=H, So we do not find the experimentally ob-
served relatively strong splitting of #, and #; away from
F o, as shown in Fig. 6 of the second article in Ref. [20].

3. Forced phase waves versus phase diffusion

At the end of this section we want to stress that the
dynamical properties of damped phase waves emitted by
periodically applied forces are in general—if the govern-
ing equation for the phase is not an ideal diffusion
equation—unrelated to and different from the free
diffusive relaxation of an initially prepared perturbation.
A periodic phase perturbation generates a damped phase



50 PHASE DYNAMICS OF PATTERNS: THE EFFECT OF . ..

wave with spatially varying local decay rates #,(x) and
local wave numbers #;(x). In the chosen experimental
measurement ranges [16,20], both quantities happened to
be close to the value %, resulting from a Stokes layer. It
should be noted, however, that (i) both these quantities
vary with distance x from the wave source in a way that
depends on the experimental parameters and (ii) %, and
H; are in general unrelated to the free diffusive relaxa-
tional behavior of an initially prepared phase perturba-
tion that is characterized by an effective diffusion con-
stant D.

VII. CONCLUSION

We have studied how phase dynamics is influenced by
lateral boundaries in dissipative nonequilibrium pattern
forming systems like Rayleigh-Bénard convection or Tay-
lor vortex flow. To that end, we used a generalized phase
diffusion equation and numerical simulations of the full
2D field equations. The ordinary phase diffusion equa-
tion originally derived by Pomeau and Manneville [3]
does not contain finite size effects. The experiment of
Gerdts [19], however, reveals deviations from theoretical
expectations which are connected to the boundaries of
the Taylor-Couette setup. We have incorporated such
effects into a phase description in the following way:
Starting from the Ginzburg-Landau amplitude equation,
an expansion around the final stationary state is per-
formed. The modulus and phase deviations from the final
state evolve on distinct time scales provided the combina-
tion a=e€!"2L /£, of relative control parameter € and sys-
tem length L scaled by the coherence length &, is large.
This is typically fulfilled in experiments. If, in addition,
the wave number of the final pattern is close to the criti-
cal one, then we end up with a phase equation containing
the space derivative of the envelope profile R (x). Exact-
ly that is the point where the phase dynamics is changed
by the lateral ends because they lead to spatial nonunifor-
mities in R (x). In RBC, sidewalls suppress convection,
so R (x) bends downwards. On the other hand, for TVF,
boundary-induced Ekman vortices enhance the envelope
profile. We have employed our generalized phase
diffusion equation to investigate two different problems
that have also been addressed in experiments: the free
decay of initially applied perturbations [17,19,20] and the
response to periodic forcing [16,20].

(a) Decay of an initially applied perturbation. The sys-
tem relaxes in a diffusive manner and the decay rates of
the different modes can be related to the eigenvalues of
the phase equation. The slowest mode surviving in the
long-time limit gives rise to the definition of an
“effective” diffusion constant D /D as the smallest posi-
tive eigenvalue. We found it advantageous to transform
the eigenvalue problem of the phase equation into a sta-
tionary Schrodinger equation where the modulus enters
via a potential

V(x)=[32R (x)]/R (x) .

The envelope profile R (x) is taken from the stationary
GLE yielding Jacobian elliptic functions as solutions or
from the final state of numerical simulations of the full
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field equations. Using the GLE moduli, we found the fol-
lowing.

(i) The eigenvalues of the Schrodinger problem and
with it the effective diffusion constant D /D, are func-
tions of only one parameter, namely, a.

(ii)) In both systems, RBC and TVF, D/D, is
significantly higher (up to a factor of 3) as it would be for
an ideal reference system with R =const.

(iii) For RBC, the GLE Schrodinger problem contains
a zero eigenvalue that allows an undamped shift of the
pattern as a whole.

(iv) Beyond the zero eigenvalue, the spectra of RBC
and TVF are identical because their corresponding poten-
tials coming from the GLE are connected by a commuta-
tion relation similar to one appearing in supersymmetric
quantum mechanics.

(v) In TVF, the data of Gerdts’s experiment [19] as well
of our own numerical simulations of the full 2D Navier-
Stokes equations confirm the theoretical predictions.
Slight deviations can be explained by the fact that the
amplitude equation itself does not describe TVF well
enough for higher € due to the inflow-outflow asymmetry
[22].

(vi) For RBC, our numerical simulations show a long
lasting nondiffusive, almost global, movement of the pat-
tern. We relate this behavior of the full system of equa-
tions to the zero eigenvalue in the phase equation that al-
lows a free translational mode. The full hydrodynamic
field equations, however, provide some mechanism re-
sponsible for the initial start of such motion and its even-
tual slowing down which is contained neither in the am-
plitude equation nor in the phase equation derived from
it.

(vii) After subtraction of the behavior in (vi), one can
extract diffusive modes fitting well to the predicted
values. On the other side, the experimental results of
Croquette and Schosseler [17] seem to be more related to
the zero eigenvalue dynamics. This might explain that
the measured relaxations lie about 30% below the
theoretical values.

(b) Response to time-periodic forcing. In a long system,
spatially localized periodic forcing generates a damped
phase wave propagating away from the source. The
properties of the phase wave can be characterized by two
independent quantities: a local wave number #;(x) and a
local decay rate #,(x). In the case of a simple phase
diffusion equation (2.1) and for a semi-infinite system,
both quantities have the same value and are connected
with the diffusion constant D, via the inverse width of

the Stokes layer, #,=1"w/2D,. In general, ¥, and ¥,
differ from %, for two reasons. If the system is not long
enough, the second fundamental solution of the pure
phase diffusion equation for a phase wave propagating in-
wards cannot be discarded. It causes #;(x) and % ,.(x) to
deviate substantially from 7, when the frequency is small
as, e.g., for the smallest frequencies in Ref. [16]. In addi-
tion, the boundary-induced amplitude variation
influences the damped phase wave. As in (a), the effect
enters via a potential term in a Schrodinger-like equation.
Hence, we get the following results.
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(i) For simple amplitude profiles leading to
V(x)=const (Sec. III A 2) # ,(x) and #;(x) are constant.
But the values split up from %, according to the sign of
V, e.g., V>0 implies #,># ;. Already for this case the
Stokes layer relations between wave number, decay rate,
and diffusion constant are destroyed.

(ii) For RBC, a closed solution for the phase equation
with amplitude profiles R (x) taken from the GLE can be
given. Because of the finiteness of the system and of am-
plitude variations, the resulting wave numbers #,(x) and
decay rates #/,(x) are space dependent in a way that
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changes with o, L, and €. In general, in finite systems the
characteristic properties of periodically forced phase
waves are unrelated to the diffusive behavior after an ini-
tial phase perturbation.
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